Введение в цифровую схемотехнику

       

Применение АЦП


Микросхемы АЦП выполняют функцию, прямо противоположную функции ЦАП, — преобразуют входной аналоговый сигнал в последовательность цифровых кодов. В общем случае микросхему АЦП можно представить в виде блока, имеющего один аналоговый вход, один или два входа для подачи опорного (образцового) напряжения, а также цифровые выходы для выдачи кода, соответствующего текущему значению аналогового сигнала (рис. 13.13).

Часто микросхема АЦП имеет также вход для подачи тактового сигнала CLK, сигнал разрешения работы CS и сигнал, говорящий о готовности выходного цифрового кода RDY. На микросхему подается одно или два питающих напряжения и общий провод. В целом микросхемы АЦП сложнее, чем микросхемы ЦАП, их разнообразие заметно больше, и поэтому сформулировать для них общие принципы применения сложнее.


Рис. 13.13.  Микросхема АЦП

Опорное напряжение АЦП задает диапазон входного напряжения, в котором производится преобразование. Оно может быть постоянным или же допускать изменение в некоторых пределах. Иногда предусматривается подача на АЦП двух опорных напряжений с разными знаками, тогда АЦП способен работать как с положительными, так и с отрицательными входными напряжениями.

Выходной цифровой код N (n-разрядный) однозначно соответствует уровню входного напряжения. Код может принимать 2n значений, то есть АЦП может различать 2n уровней входного напряжения. Количество разрядов выходного кода n представляет собой важнейшую характеристику АЦП. В момент готовности выходного кода выдается сигнал окончания преобразования RDY, по которому внешнее устройство может читать код N.

Управляется работа АЦП тактовым сигналом CLK, который задает частоту преобразования, то есть частоту выдачи выходных кодов. Предельная тактовая частота — второй важнейший параметр АЦП. В некоторых микросхемах имеется встроенный генератор тактовых сигналов, поэтому к их выводам подключается кварцевый генератор или конденсатор, задающий частоту преобразования. Сигнал CS разрешает работу микросхемы.

Выпускается множество самых разнообразных микросхем АЦП, различающихся скоростью работы (частота преобразования от сотен килогерц до сотен мегагерц), разрядностью (от 6 до 24), допустимыми диапазонами входного сигнала, величинами погрешностей, уровнями питающих напряжений, методами выдачи выходного кода (параллельный или последовательный), другими параметрами. Обычно микросхемы с большим количеством разрядов имеют невысокое быстродействие, а наиболее быстродействующие микросхемы имеют небольшое число разрядов. Область применения любой микросхемы АЦП во многом определяется использованным в ней принципом преобразования, поэтому необходимо знать особенности этих принципов. Для выбора и использования АЦП необходимо пользоваться подробными справочными данными от фирмы-производителя.


Рис. 13.14.  Компаратор напряжения

В качестве базового элемента любого АЦП используется компаратор напряжения (рис. 13.14), который сравнивает два входных аналоговых напряжения и, в зависимости от результата сравнения, выдает выходной цифровой сигнал — нуль или единицу. Компаратор работает с большим диапазоном входных напряжений и имеет высокое быстродействие (задержка порядка единиц наносекунд).


Рис. 13.15.  АЦП последовательного типа

Существует два основных принципа построения АЦП: последовательный и параллельный.

В последовательном АЦП входное напряжение последовательно сравнивается одним единственным компаратором с несколькими эталонными уровнями напряжения, и в зависимости от результатов этого сравнения формируется выходной код. Наибольшее распространение получили АЦП на основе так называемого регистра последовательных приближений (рис. 13.15).

Входное напряжение подается на вход компаратора, на другой вход которого подается эталонное напряжение, ступенчато изменяющееся во времени. Выходной сигнал компаратора подается на вход регистра последовательных приближений, тактируемого внешним тактовым сигналом. Выходной код регистра последовательных приближений поступает на ЦАП, которое из опорного напряжения формирует меняющееся эталонное напряжение.

Регистр последовательных приближений работает так, что в зависимости от результата предыдущего сравнения выбирается следующий уровень эталонного напряжения по следующему алгоритму:

  • В первом такте входной сигнал сравнивается с половиной опорного напряжения.
  • Если входной сигнал меньше половины опорного напряжения, то на следующем такте он сравнивается с четвертью опорного напряжения (то есть половина опорного напряжения уменьшается на четверть). Одновременно в регистр последовательных приближений записывается старший разряд выходного кода, равный нулю.
  • Если же входной сигнал больше половины опорного напряжения, то на втором такте он сравнивается с 3/4 опорного напряжения (то есть половина увеличивается на четверть). Одновременно в регистр последовательных приближений записывается старший разряд выходного кода, равный единице.
  • Затем эта последовательность сравнений повторяется нужное число раз с уменьшением на каждом такте вдвое ступени изменения эталонного напряжения (на третьем такте — 1/8 опорного напряжения, на четвертом — 1/16 и т.д.). В результате опорное напряжение в каждом такте приближается к входному напряжению. Всего преобразование занимает n тактов. В последнем такте вычисляется младший разряд.

Понятно, что процесс этот довольно медленный, требует нескольких тактов, причем в течение каждого такта должны успеть сработать компаратор, регистр последовательных приближений и ЦАП с выходом по напряжению. Поэтому последовательные АЦП довольно медленные, имеют сравнительно большое время преобразования и малую частоту преобразования.

Второй тип АЦП — АЦП параллельного типа — работает по более простому принципу. Все разряды выходного кода вычисляются в них одновременно (параллельно), поэтому они гораздо быстрее, чем последовательные АЦП. Правда, они требуют применения большого количества компараторов (2n–1), что вызывает чисто технологические трудности при большом количестве разрядов (например, при 12-разрядном АЦП требуется 4095 компараторов).

Содержание раздела