Введение в цифровую схемотехнику

       

Дешифраторы и шифраторы


Функции дешифраторов и шифраторов понятны из их названий. Дешифратор преобразует входной двоичный код в номер выходного сигнала (дешифрирует код), а шифратор преобразует номер входного сигнала в выходной двоичный код (шифрует номер входного сигнала). Количество выходных сигналов дешифратора и входных сигналов шифратора равно количеству возможных состояний двоичного кода (входного кода у дешифратора и выходного кода у шифратора), то есть 2n, где n — разрядность двоичного кода (рис. 5.1). Микросхемы дешифраторов обозначаются на схемах буквами DC (от английского Decoder), а микросхемы шифраторов — CD (от английского Coder).


Рис. 5.1.  Функции дешифратора (слева) и шифратора (справа)

На выходе дешифратора всегда присутствует только один сигнал, причем номер этого сигнала однозначно определяется входным кодом. Выходной код шифратора однозначно определяется номером входного сигнала.

Рассмотрим подробнее функцию дешифратора.

В стандартные серии входят дешифраторы на 4 выхода (2 разряда входного кода), на 8 выходов (3 разряда входного кода) и на 16 выходов (4 разряда входного кода). Они обозначаются соответственно как 2–4, 3–8, 4–16. Различаются микросхемы дешифраторов входами управления (разрешения/запрета выходных сигналов), а также типом выхода: 2С или ОК. Выходные сигналы всех дешифраторов имеют отрицательную полярность. Входы, на которые поступает входной код, называют часто адресными входами. Обозначают эти входы 1, 2, 4, 8, где число соответствует весу двоичного кода (1 — младший разряд, 2 — следующий разряд и т.д.), или А0, А1, А2, А5. В отечественных сериях микросхемы дешифраторов обозначаются буквами ИД. На рис. 5.2 показаны три наиболее типичных микросхемы дешифраторов.


Рис. 5.2.  Примеры микросхем дешифраторов

Код на входах 1, 2, 4, 8 определяет номер активного выхода (вход 1 соответствует младшему разряду кода, вход 8 — старшему разряду кода). Входы разрешения С1, С2, С3 объединены по функции И и имеют указанную на рисунке полярность.
Для примера в табл. 5. 1 приведена таблица истинности дешифратора ИД7 (3—8). Существуют и дешифраторы 4–10 (например, ИД6), которые обрабатывают не все возможные 16 состояний входного кода, а только первые 10 из них.

Первые три строки таблицы соответствуют запрету выходных сигналов. Разрешением выхода будет единица на входе С1 и нули на входах С2 и С5. Символ "Х" обозначает безразличное состояние данного входа (неважно, нуль или единица). Нижние восемь строк соответствуют разрешению выходных сигналов. Номер активного выхода (на котором формируется нулевой сигнал) определяется кодом на входах 1, 2, 4, причем вход 1 соответствует младшему разряду кода, а вход 4 — старшему разряду кода.

Таблица 5.1. Таблица истинности дешифратора 3–8 (ИД7)Входы ВыходыC1-C2-C342101234567
0XXXXX11111111
X1XXXX11111111
XX1XXX11111111
10000001111111
10000110111111
10001011011111
10001111110111
10010011110111
10010111111011
10011011111101
10011111111110
on_load_lecture()
Дальше »


  Если Вы заметили ошибку - сообщите нам.  
Страницы: 1 | 2 | 3 | 4 | 5 | вопросы | » | учебники | для печати и PDA

Курсы | Учебные программы | Учебники | Новости | Форум | Помощь

Телефон: +7 (495) 253-9312, 253-9313, факс: +7 (495) 253-9310, email: info@intuit.ru
© 2003-2007, INTUIT.ru::Интернет-Университет Информационных Технологий - дистанционное образование



Еще одно распространенное применение дешифраторов — селекция (выбор) заданных входных кодов. Появление отрицательного сигнала на выбранном выходе дешифратора будет означать поступление на вход интересующего нас кода. В данном случае увеличивать число разрядов входного селектируемого кода гораздо проще, чем в предыдущем (см. рис. 5.3). Например, две микросхемы 4–16 позволяют селектировать 8-разрядный код (рис. 5.4). В примере на рисунке селектируется 16-ричный код 2А (двоичный код 0010 1010). При этом один дешифратор работа ет с младшими четырьмя разрядами кода, а другой — со старшими четырьмя разрядами. Объединяются дешифраторы так, что один из них разрешает работу другого по входам –С1 и –С2. Применяя механические переключатели выходов дешифраторов (тумблеры, перемычки), можно легко изменять код, селектируемый данной схемой.


Рис. 5.4.  Селектирование кода на дешифраторах

Еще одно важное применение дешифраторов состоит в перекоммутации одного входного сигнала на несколько выходов. Или, другими словами, дешифратор в данном случае выступает в качестве демультиплексора входных сигналов, который позволяет разделить входные сигналы, приходящие в разные моменты времени, на одну входную линию (мультиплексированные сигналы). При этом входы 1, 2, 4, 8 дешифратора используются в качестве управляющих, адресных, определяющих, на какой выход переслать пришедший в данный момент входной сигнал (рис. 5.5), а один из входов С выступает в роли входного сигнала, который пересылается на заданный выход. Если у микросхемы имеется несколько стробирующих входов С, то оставшиеся входы С можно использовать в качестве разрешающих работу дешифратора.


Рис. 5.5.  Включение дешифратора как демультиплексора

Как и для любых других цифровых микросхем, для дешифраторов наиболее критична ситуация одновременного или почти одновременного изменения входных сигналов. Например, если стробы С постоянно разрешают работу дешифратора, то в момент изменения входного кода на любом выходе дешифратора могут появиться паразитные отрицательные короткие импульсы.


Это может быть связано как с неодновременным выставлением разрядов кода (из-за несовершенства микросхем источников кода или из-за разных задержек распространения по линиям связи), так и с внутренними задержками самих микросхем дешифраторов.


Рис. 5.6.  Стробирование выходных сигналов дешифратора

Если такие паразитные импульсы нужно исключить, то можно применять синхронизацию с помощью стробирующих сигналов. Используемый для этого сигнал С должен начинаться после текущего изменения кода, а заканчиваться до следующего изменения кода, то есть должен быть реализован вложенный цикл. На рис. 5.6 показано, как будет выглядеть выходной сигнал дешифратора без стробирования и со стробированием.

На втором уровне представления (модель с временными задержками) также надо учитывать, что задержки дешифратора больше задержки простых логических элементов примерно вдвое для входного кода и примерно в полтора раза — для стробирующих входов. То есть если попытаться заменить дешифратор схемой на логических элементах, то такой дешифратор получится медленнее. Точные величины задержек надо смотреть в справочниках.


Рис. 5.7.  Позиционная индикация на дешифраторе с выходами ОК

Дешифраторы, имеющие выходы типа ОК (ИД5, ИД10), удобно применять в схемах позиционной индикации на светодиодах. На рис. 5.7 приведен пример такой индикации на микросхеме ИД5, которая представляет собой два дешифратора 2–4 с объединенными входами для подачи кода и стробами, позволяющими легко строить дешифратор 3–8. При этом старший разряд кода выбирает один из дешифраторов 2–4 (нуль соответствует верхнему по схеме дешифратору, а единица — нижнему). То есть в данном случае номер горящего светодиода равен входному коду дешифратора. Такая индикация называется позиционной.


Рис. 5.8.  Объединение выходов дешифраторов с ОК

Выходы микросхем дешифраторов с ОК можно объединять между собой для реализации проводного ИЛИ (рис. 5.8). Нуль на объединенном выходе будет тогда, когда хотя бы на одном из выходов вырабатывается нуль.


При равномерном пошаговом наращивании входного кода (например, с помощью счетчика) такое решение позволяет формировать довольно сложные последовательности выходных сигналов. Правда, каждый выход дешифратора может использоваться для получения только одного выходного сигнала. Это ограничивает возможности таких схем.

Шифраторы используются гораздо реже, чем дешифраторы. Это связано с более специфической областью их применения. Значительно меньше и выбор микросхем шифраторов в стандартных сериях. В отечественных сериях шифраторы имеют в названии буквы ИВ.

На рис. 5.9 показаны для примера две микросхемы шифраторов ИВ1 и ИВ3. Первая имеет 8 входов и 3 выхода (шифратор 8–3), а вторая — 9 входов и 4 выхода (шифратор 9–4). Все входы шифраторов — инверсные (активные входные сигналы — нулевые). Все выходы тоже инверсные, то есть формируется инверсный код. Микросхема ИВ1, помимо 8 информационных входов и 3 разрядов выходного кода (1, 2, 4), имеет инверсный вход разрешения –ЕI, выход признака прихода любого входного сигнала –GS, а также выход переноса –EO, позволяющий объединять несколько шифраторов для увеличения разрядности.


Рис. 5.9.  Микросхемы шифраторов

Таблица истинности шифратора ИВ1 приведена в табл. 5.2.

Таблица 5.2. Таблица истинности шифратора ИВ1Входы Выходы-EI01234567-GS421-EO
1XXXXXXXX11111
01111111111110
0XXXXXXX000001
0XXXXXX0100011
0XXXXX01100101
0XXXX011100111
0XXX0111101001
0XX01111101011
0X011111101101
00111111101111
Из таблицы видно, что на выходах кода 1, 2, 4 формируется инверсный двоичный код номера входной линии, на который приходит отрицательный входной сигнал. При одновременном поступлении нескольких входных сигналов формируется выходной код, соответствующий входу с наибольшим номером, то есть старшие входы имеют приоритет перед младшими. Поэтому такой шифратор называется приоритетным. При отсутствии входных сигналов (вторая строчка таблицы) формируется выходной код 111.


Единичный сигнал –EI ( первая строчка) запрещает работу шифратора (все выходные сигналы устанавливаются в единицу). На выходе –GS вырабатывается нуль при приходе любого входного сигнала, что позволяет, в частности, отличить ситуацию прихода нулевого входного сигнала от ситуации отсутствия любых входных сигналов. Выход -EO становится активным (нулевым) при отсутствии входных сигналов, но разрешении работы шифратора сигналом –EI.

Стандартное применение шифраторов состоит в сокращении количества сигналов. Например, в случае шифратора ИВ1 информация о восьми входных сигналах сворачивается в три выходных сигнала. Это очень удобно, например, при передаче сигналов на большие расстояния. Правда, входные сигналы не должны приходить одновременно. На рис. 5.10 показаны стандартная схема включения шифратора и временные диаграммы его работы.


Рис. 5.10.  Стандартное включение шифратора

Инверсия выходного кода приводит к тому, что при приходе нулевого входного сигнала на выходе формируется не нулевой код, а код 111, то есть 7. Точно так же при приходе, например, третьего входного сигнала на выходе образуется код 100, то есть 4, а при приходе пятого выходного сигнала — код 010, то есть 2.

Наличие у шифраторов входов EI и EO позволяет увеличивать количество входов и разрядов шифратора, правда, с помощью дополнительных элементов на выходе. На рис. 5.11 показан пример построения шифратора 16–4 на двух микросхемах шифраторов ИВ1 и трех элементах 2И-НЕ (ЛА3).


Рис. 5.11.  Шифратор 16–4 на двух шифраторах 8–3

Одновременное или почти одновременное изменение сигналов на входе шифратора приводит к появлению периодов неопределенности на выходах. Выходной код может на короткое время принимать значение, не соответствующее ни одному из входных сигналов. Поэтому в тех случаях, когда входные сигналы могут приходить одновременно, необходима синхронизация выходного кода, например, с помощью разрешающего сигнала EI, который должен приходить только тогда, когда состояние неопределенности уже закончилось.

Задержка шифратора от входа до выхода кода примерно в полтора раза превышает задержку логического элемента, а задержка до выхода GS — примерно в два раза больше. Точные величины задержек микросхем надо смотреть в справочниках.


Содержание раздела