Повторители и буферы
Повторители и буферы отличаются от инверторов прежде всего тем, что они не инвертируют сигнал (правда, существуют и инвертирующие буферы). Зачем же тогда они нужны? Во-первых, они выполняют функцию увеличения нагрузочной способности сигнала, то есть позволяют подавать один сигнал на много входов. Для этого имеются буферы с повышенным выходным током и выходом 2С, например, ЛП16 (шесть буферных повторителей). Во-вторых, большинство буферов имеют выход ОК или 3С, что позволяет использовать их для получения двунаправленных линий или для мультиплексирования сигналов. Поясним подробнее эти термины.
![](image/povtoriteli-i-bufery_1.gif)
Рис. 3.6. Двунаправленная линия
Под двунаправленными линиями понимаются такие линии (провода), сигналы по которым могут распространяться в двух противоположных направлениях. В отличие от однонаправленных линий, которые идут от одного выхода к одному или нескольким входам, к двунаправленной линии могут одновременно подключаться несколько выходов и несколько входов (рис. 3.6). Понятно, что двунаправленные линии могут организовываться только на основе выходов ОК или 3С. Поэтому почти все буферы имеют именно такие выходы.
![](image/povtoriteli-i-bufery_2.gif)
Рис. 3.7. Однонаправленная мультиплексированная линия на основе буферов
Мультиплексированием называется передача разных сигналов по одним и тем же линиям в разные моменты времени. Основная цель мультиплексирования состоит в сокращении общего количества соединительных линий. Двунаправленная линия обязательно является мультиплексированной, а мультиплексированная линия может быть как однонаправленной, так и двунаправленной. Но в любом случае к ней присоединяется несколько выходов, только один из которых в каждый момент времени находится в активном состоянии. Остальные выходы в это время отключаются (переводятся в пассивное состояние). В отличие от двунаправленной линии, к мультиплексированной линии, построенной на основе буферов, может быть подключен всего лишь один вход, но обязательно несколько выходов с ОК или 3С (рис. 3.7).
Мультиплексированные линии могут строиться не только на буферах, но и на микросхемах мультиплексоров, которые будут рассмотрены в лекциях 5, 6.
![](image/povtoriteli-i-bufery_3.gif)
Рис. 3.8. Объединение выходов буферов с ОК
Примером буферов с выходом ОК является микросхема ЛП17 (шесть буферов с ОК). Точно так же, как и в случае инверторов с ОК (см. рис. 3.5), выходы нескольких буферов с ОК могут объединяться для получения функции "Монтажное И", то есть на выходе будет сигнал логической единицы только при единицах на всех входах (рис. 3.8). То есть реализуется многовходовой элемент И.
Буферы с выходом 3С представлены гораздо большим количеством микросхем, например, ЛП8, ЛП11, АП5, АП6, АП14. Эти буферы обязательно имеют управляющий вход EZ (или OE), переводящий выходы в третье, пассивное состояние. Как правило, третьему состоянию соответствует единица на этом входе, а активному состоянию выходов — нуль, то есть сигнал EZ имеет отрицательную полярность.
Буферы бывают однонаправленные или двунаправленные, с инверсией или без инверсии сигналов, с управлением всеми выходами одновременно или с управлением группами выходов. Всем этим и определяется большое разнообразие микросхем буферов.
0 | 0 | 0 |
1 | 0 | 1 |
0 | 1 | 3C |
1 | 1 | 3C |
![](image/povtoriteli-i-bufery_4.gif)
Рис. 3.9. Применение буфера с 3С в качестве буфера с ОК
Эти же буферы иногда удобно использовать для замещения буферов с выходом ОК (рис. 3.9). В этом случае вход управления служит информационным входом. При нуле на входе мы получаем нуль на выходе, а при единице на входе — третье состояние на выходе.
![](image/povtoriteli-i-bufery_5.gif)
Рис. 3.10. Мультиплексирование двух входных кодов с помощью буферов с 3С
Очень часто надо обрабатывать не одиночные сигналы, а группы сигналов, например, сигналы, передающие многоразрядные коды. В этом случае удобно применять буферы с групповым управлением, То есть имеющие один вход разрешения EZ для нескольких выходов. Примерами могут служить микросхемы ЛП11 (шесть буферов, разделенные на две группы: четыре и два буфера, для каждой из которых имеется свой вход управления) и АП5 (восемь буферов, разделенные на две группы по четыре буфера, каждая из которых имеет свой вход управления).
На рис. 3.10 показан пример мультиплексирования двух восьмиразрядных кодов с помощью двух микросхем АП5. Одноименные выходы обеих микросхем объединены между собой. Пропускание на выход каждого из двух входных кодов разрешается своим управляющим сигналом (Упр. 1 и Упр. 2), причем должен быть исключен одновременный приход этих двух сигналов, чтобы не было конфликтов на выходах.
![](image/povtoriteli-i-bufery_6.gif)
Рис. 3.11. Включение двунаправленного буфера
Двунаправленные буферы, в отличие от однонаправленных, позволяют передавать сигналы в обоих направлениях. В зависимости от специального управляющего сигнала T (другое обозначение — BD), входы могут становиться выходами и наоборот: выходы — входами. Обязательно имеется и вход управления третьим состоянием EZ, который может отключить как входы, так и выходы.
На рис. 3.11 для примера показан двунаправленный буфер АП6, который может передавать данные между двумя двунаправленными шинами А и B в обоих направлениях. При единичном уровне на управляющем входе Т (сигнал Напр.) данные передаются из шины A в шину B, а при нулевом уровне — из шины B в шину A (табл. 3.3). Единичный уровень на управляющем входе EZ (сигнал Откл.) отключает микросхему от обеих шин.
0 | 0 | B![]() |
1 | 0 | A![]() |
0 | 1 | 3C |
1 | 1 | 3C |
![](image/povtoriteli-i-bufery_7.gif)
Рис. 3.12. Организация двунаправленной передачи с помощью однонаправленных буферов
Микросхемы буферов в отечественных сериях имеют разнообразные обозначения: ЛН, ЛП, АП, ИП, что порой затрудняет их выбор. Например, ЛН6, ЛП8, ЛП11, АП5, АП6, ИП5, ИП6. Буферы с буквами ЛН имеют инверсию, буферы АП и ИП могут быть с инверсией и без инверсии. Все параметры у буферов довольно близки, отличие — в инверсии, в количестве разрядов и в управляющих сигналах.
Временные параметры буферов включают помимо задержки сигнала от информационного входа до информационного выхода, также задержки перехода выхода в третье состояние и из третьего состояния в активное состояние (tPHZ, tPLZ и tPZH, tPZL). Величины этих задержек обычно примерно вдвое больше, чем величины задержек между информационным входом и выходом.
Отключаемый выход буферов (как ОК, так и 3С) требует применения нагрузочных резисторов. В противном случае вход, подключенный к отключенному выходу, оказывается подвешенным, в результате чего схема может работать неустойчиво, давать сбои. Подключение резистора в случае выхода ОК (pull-up) производится стандартным способом (см. рис. 3.8). Точно так же может быть включен резистор между выходом 3С и напряжением питания (рис. 3.13), тогда при отключенном выходе на вход будет поступать уровень логической единицы. Однако можно включить и резистор между выходом и землей, тогда при отключенном выходе на вход будет поступать сигнал логического нуля. Применяется также и включение двух резисторов (резистивного делителя), при этом величина верхнего резистора (присоединенного к шине питания) обычно выбирается в 2–3 раза меньше, чем нижнего резистора (присоединенного к "земле"), а величина параллельного соединенных двух резисторов выбирается равной примерно 100 Ом. Например, резисторы могут иметь номиналы 240 Ом и 120 Ом, 360 Ом и 130 Ом. Отключенный выход воспринимается в данном случае присоединенным к нему входом как единица.
![](image/povtoriteli-i-bufery_8.gif)
Рис. 3.13. Включение резисторов на выходе буферов 3С
Иногда к выходам 3С резисторы не присоединяют вообще, но в этом случае надо обеспечить, чтобы последующий вход воспринимал сигнал с выхода 3С (то есть реагировал на него) только тогда, когда выход находится в активном состоянии. Иначе возможны сбои и отказы в работе устройства.
![](image/povtoriteli-i-bufery_9.gif)
Рис. 3.14. Применение буферов для индикации
Еще одно типичное применение буферов, связанное с их большими выходными токами, — это светодиодная индикация. Светодиоды могут подключаться к выходу буферов двумя основными способами (рис. 3.14). При первом из них (слева на рисунке) светодиод горит, когда на выходе 3С или 2С-сигнал логической единицы, а при втором (справа на рисунке) — когда на выходе ОК сигнал логического нуля. Величина резистора выбирается исходя из характеристик светодиода, но обычно составляет порядка 1 кОм.
on_load_lecture()
![](../../../../img/empty.gif)
![](../../../../img/empty.gif)
Дальше »
![](../../../../img/empty.gif)
![](../../../../img/empty.gif)
![](../../../../img/empty.gif)
![](../../../../img/empty.gif)
![](../../../../img/empty.gif)
Курсы | Учебные программы | Учебники | Новости | Форум | Помощь
Телефон: +7 (495) 253-9312, 253-9313, факс: +7 (495) 253-9310, email: info@intuit.ru © 2003-2007, INTUIT.ru::Интернет- Университет Информационных Технологий - дистанционное образование |
Например, резисторы могут иметь номиналы 240 Ом и 120 Ом, 360 Ом и 130 Ом. Отключенный выход воспринимается в данном случае присоединенным к нему входом как единица.
![](image/povtoriteli-i-bufery_8.gif)
Рис. 3.13. Включение резисторов на выходе буферов 3С
Иногда к выходам 3С резисторы не присоединяют вообще, но в этом случае надо обеспечить, чтобы последующий вход воспринимал сигнал с выхода 3С (то есть реагировал на него) только тогда, когда выход находится в активном состоянии. Иначе возможны сбои и отказы в работе устройства.
![](image/povtoriteli-i-bufery_9.gif)
Рис. 3.14. Применение буферов для индикации
Еще одно типичное применение буферов, связанное с их большими выходными токами, — это светодиодная индикация. Светодиоды могут подключаться к выходу буферов двумя основными способами (рис. 3.14). При первом из них (слева на рисунке) светодиод горит, когда на выходе 3С или 2С-сигнал логической единицы, а при втором (справа на рисунке) — когда на выходе ОК сигнал логического нуля. Величина резистора выбирается исходя из характеристик светодиода, но обычно составляет порядка 1 кОм.